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Summary.  Models  for predic t ing cummula t ive  genetic 
gain from recurrent  selection appl icable  to predomi-  
nantly outcrossing plant  species are derived to include 
the effect of  observations on clonal replicates (ramets) 
in addi t ion  to observat ions on individuals  and family 
means. Such models  are discussed with special refer- 
ence to forest trees. The consequence of  redistr ibut ing 
effort from individuals  to ramets is investigated for 
several condit ions with a fixed number  of  families and 
fixed total test size. Factors  that  affect the dis t r ibut ion 
of  variance among sources and factors that affect 
individual  selection intensity are the pr imary  deter- 
minants of  the op t imum dis t r ibut ion of  effort. The 
op t imum number  of  ramets ranged from 1 to 6 for the 
condit ions tested and the efficiency of  redis t r ibut ion 
(ratio of  gain for the op t imum dis t r ibut ion to the gain 
for the single-ramet,  or non-clonal case) ranged from 
1.00 to 1.20. Using clonal replicates in genetic tests 
usually results in increased cummula t ive  genetic gain 
relative to non-clonal tests, without  an increase in test 
effort. 
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Introduction 

Genetic  tests for cross-ferti l ized plant  species are 
usually structured to include a hierarchy of  families 
and individuals  within families. Each individual ' s  

* Current address: Forest Research Branch, 99 Wellesley 
Street West, Toronto, Ontario M7A lW3, Canada 

genetic contr ibut ion is coupled with a unique environ- 
mental effect to form the resulting individual  pheno- 
type. Because environmental  effects are usually large 
and because genetic variance among individuals  (geno- 
types) is confounded with environmental  effects, in- 
dividual  genotypic values are difficult to assess. The 
confounding of  genetic and environmental  effects is 
t roublesome when individual  selections must be made  
to initiate the following generations; such is the case 
for our area of  specialization, forest tree improvement .  
Consequently, most recurrent  selection programs de- 
signed for forest trees depend heavily on evaluations 
and selections based on family performance.  The ge- 
netic variat ion that exists within families remains 
largely unused. When  clonal replicates of  each indi- 
vidual (ramets) can be produced,  each individual ' s  
genotypic contr ibut ion can be observed in combinat ion  
with a number  of  unique environmental  effects (i.e. 
genotypic value and environment  are no longer con- 
founded). Intuitively, such repeated observations 
should allow addit ional  precision in ranking individ-  
uals with regard to their  genetic value and consequent- 
ly allow better uti l ization of  the genetic var iabi l i ty  that 
exists within families. 

Most of the published investigation relating to the opti- 
mum number of ramets in genetic tests are aimed at accurate 
evaluation of individual (clone) values in the absence of 
family data. Also, such investigations usually start with em- 
pirical data and infer an optimum as the number of ramets 
necessary to evaluate a clone mean with a specified degree of 
precision. Our approach has been to include clonal replication 
as a component in a testing scheme that utilizes several levels 
of variation. Libby (1969) presented a treatment with a 
similar intent to ours by modifying an efficiency formula 
originally developed for index selection based on a nested 
mating design (Osborn 1957). The optimum number of ramets 
per individual was one in all cases; we will compare Libby's 
results to our own in the following sections. 
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Our  objectives for this paper  are as follows: 

1) To provide  models  for p red ic t ing  genet ic  ga in  w h e n  
genet ic  tests inc lude  observa t ions  on  c lona l  repl icates 
o f  ind iv idua l s  in  add i t ion  to family  structure.  
2) To  provide  a me thod  for p red ic t ing  the o p t i m u m  
n u m b e r  of  ramets  per  i nd iv idua l  when  both  the n u m -  
ber  of  famil ies  ava i lab le  for select ion and  the total test 
size ( n u m b e r  o f  plants  tested) are fixed. 
3) To  provide  demons t ra t ive  examples  based on  a 
range of  popu la t ion ,  genet ic  and  env i ronmen ta l  pa-  
rameters  realist ic for forest tree improvemen t .  

Al though  we use our  own specia l iza t ion (forest tree 
improvemen t )  as an example ,  our  results are general ly  
appl icab le  to cross fer t i l iz ing species for which  clonal  
p ropaga t ion  is an  opt ion.  

Material and methods 

The consequences of using clonal replicates of genotypes in 
genetic tests were investigated for three selection methods: 
1) two-stage selection based on full-sib families and individ- 
uals within families, 2) three-stage selection based on half-sib 
families, full-sib families selected within half-sib families, and 
individuals selected within full-sib families, and 3) combined 
index selection. For all methods, formulas were derived for 
predicting genetic gain and applied to a method for optimiz- 
ing the distribution of effort between observations on individ- 
uals and ramets. Optimization was performed for a variety of 
conditions. 

Prediction of genetic gain 

Formulas for predicting genetic gain from multistage selection 
are derived below. The following model is appropriate when 
each individual may be represented in a genetic test by 
multiple ramets: 

Yijkl,n = u + Gj( 0 + Gk(0 + Sjk(0 + Ct(~jk) + Em(ijkl ) (1) 

(see Kempthorne 1969) yields the following variances: 

V (half-sib (hs) family means) 

= (1 + l /n  0 a2g + a~/nx + a~/nxnr + adnxncnr 

V (full-sib (fs) family means) 

= 2 crg 2 + as 2 + a~/rte + o'2e/nc nr 

V (individual means) 
= 2 a 2 + a 2 + a 2 + o'2/nr 

in which 

n• = number of full-sib families per parent 
nc = number of individuals per cross (full-sib family) 
n r = number of ramets per individual 

Recalling that: 

(2) 

(3) 

(4) 

V (full-sib family deviations) = V (fs family means) - V (hs 
family means), and V (individual deviations) = V (individual 
means) - V (fs family means) and substituting V E for cry, 
IA VA for %2, 1/, VD for ~r~ and 1/2 VA + a/, VD for cr~ heritabilities 
were obtained for half-sib family means (hs), full-sib family 
means (fs), full-sib family deviations (fsd) and individual 
deviations (ind)i. Genetic gain formulas were obtained from 
the formula: 

G = i  oph 2 (Falconer 1960) (5) 

in which, i, Up and h 2 are the selection intensity, phenotypic 
standard deviation, and the heritability for the appropriate 
selection unit (e.g. half-sib family mean, full-sib family 
deviation, etc.). The following gain predictors were obtained 
for two-stage selection: 

Gfs = ifs h~s O'fs = 

ifs (VA/2 + VA/2 nO 

(VA/2 + VD/4 + VA/2 nc + 3 VD/4nc + VE/ncnr) 1/2 
(6) 

n " 2 D 

G i n  d - lin d hind O'in d - -  

iind [(1 -- 1/no) VA/2] 
((1 - 1/no) (VA/2 + 3VD/4 + VE/nr)) 1/2 

(7) 

and for 3 stage selection: 

G h s =  ihs  h ~ s  O'hs 
ihs [((1 + 1/nx) Va/4) + (l/nxnr 

((! + 1/nx) (VA/4 + VD/4 nx + VA/2nxnc + 3 VD/4nxnc + VE/nenrnx)) 1/2 (8) 

G f s d  = i fsd  h ~ s d  O'fsd = 
lfs d [(1 - l / n 0  (VA/4 + VA/2 no)] 

((1 - 1/nx) (VA/4 + VD/4 + VA/2n c + 3VD/4n c + VE/nenr)) 1/2 ' 

in which 

u = population mean 
Gj = the average deviation from the mean of families contain- 

ing the j th parent 
Gk = the average deviation from the mean of families contain- 

ing the k th parent 
Sjk = the deviation of family j k  from the average of the j t h  

and k th family means 
C / = the deviation of individual / from thej  k family mean 
Em= a random error effect 

The subscript i denotes the i th breeding group; variation 
that exists among breeding groups has been ignored in our 
initial treatment. Taking expectations for the above model 

(9) 

Gain for individual selection in the three-stage method is 
identical to that for the two-stage method (7). Note that the 
only consequence of including clonal replicates on the above 
formulas is the inclusion of the factor 1/nr in some compo- 
nents of the heritability denominator. When n r = 1, the above 
formulas are equivalent to formulas for predicting genetic 
gain in the absence of clonal propagation. 

1 V A, VD and VE are the additive genetic, dominance genetic 
and environmental variance, respectively 
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Selection intensities for half-sib family means, full-sib 
family means and for individual deviations were calculated 
directly from tables given in Becker (1975). Selection inten- 
sities for full-sib family deviations present a more complex 
problem when three-stage selection is performed. Factorial 
and diallel breeding designs generate full-sib families that are 
members of two half-sib families. When half-sib families are 
selected first in the three-stage series, it is possible to select the 
same full-sib family from two previously selected half-sib 
families. When this occurs, an alternative full-sib family must 
be selected to achieve the desired population size. The result 
would be a reduction in the effective full-sib family selection 
intensity. Squillace (1973) noted this problem and compen- 
sated by selecting twice the number  of half-sib families neces- 
sary, a method that is likely to over-compensate for the prob- 
lem. We calculated the probabili ty that two, three, four, or 
more, half-sib families would be selected from a single breed- 
ing group and the conditional probabili ty that a single full-sib 
family would be selected twice. The average number  of full- 
sib families selected twice was calculated and selection inten- 
sities were adjusted to reflect selection of additional families 
as compensation. One caveat to our adjustment is that  all half- 
sib family means were considered independent and the rank of 
full-sib families within two overlapping half-sib families 
assumes no covariance. Additive genetic covariance due to 
sharing of common parents is likely to invalidate the above to 
some extent and cause our full-sib family selection intensities 
to be somewhat larger than appropriate. 

Gains were calculated for each stage of selection and the 
total gain for multistage selection is the sum of the gains for 
each stage. 

Gains for combined index selection were predicted using 
the formula: 

G = i  (b' C) 1/2 (11) 

in which G is the genetic gain, i is the selection intensity, b is 
the vector of opt imum weights for the phenotypic records 
indexed (e.g. clone mean, family mean) and C is the vector of 
expected covariances between the phenotypic record and the 
true genetic value of the individual. Methods for obtaining 
indexes and predicting gain for any mating design are avail- 
able (e.g. Van Vleck 1979) and will not be discussed further 
here. The advantage of using clonal replicates in index selec- 
tion is realized through indexing on a clone mean (average 
over several ramets) rather than a single phenotypic value. 

2) Either the results are for a single environment or there are 
no genotype x environment interactions. Also, within-family 
and between family environmental variances are equal - this 
is valid for tests established in a non-contiguous plot design. 
3) No additional variance is created by the vegetative propa- 
gation process. 
4) Coancestry control is limited: no coancestry control is prac- 
ticed for index selection and half-sib family structure is 
ignored when doing two-stage selection. 

Each of these assumptions is likely to be invalid, at least 
to some extent, in most tree improvement programs. However, 
all of the controlling assumptions are testable and their mag- 
nitude to some degree estimable. 

Conditions 

The conditions are given in Table 1. We use a recurrent selec- 
tion program in which 120 full-sib families are created and 
144 plants per family are tested each generation. The mating 
design controls both the number  of genotypes that  must be 
selected and crossed each generation, and the number  of full- 
sib families per half-sib family. For example, a 2 x 2 factorial 
scheme requires the mating of 120 selected genotypes to 
produce 120 full-sib families and provides 120 overlapping 
half-sib families for selection. A 4 x 4 factorial scheme re- 
quires the mating of 60 selected genotypes to produce 120 full- 
sib families and provides 60 half-sib families for selection. 
The lower order mating designs (2 • 2 factorial and 3 • 3 
diallel schemes) also differ from their higher order (4 x 4 and 
5 x 5) counterparts in the number  of full-sib families per half- 
sib family; this affects both the selection intensity for full-sib 
families and the gain formulas presented above. Table 2 sum- 
marizes our selection scenarios. For two stage selection, half- 
sib relationships are ignored and mating design affects only 
full-sib family and individual selection intensities. When 
three-stage selection is performed, the mating design affects 
selection intensities at all three levels. For index selection the 
mating design affects both the selection intensity and the 
precision of estimating each individual's true genetic value. 

Variance parameters were chosen to represent a character 
with low to moderate heritability and to cover a range of 
possible genetic-environment variance combinations that 
could result in each heritability. The consequence of fixing 
both the total variance and the heritability for each set is 

Method of optimization 

Our method for optimizing the distribution of effort among 
genotypes and ramets is similar to that used by Squillace 
(1973) for distributing effort among families and individuals. 
First, we fix both the total effort (number of "plants" in the 
test) and the number  of families available for selection in each 
generation. As a result the number  of plants per family is also 
fixed. We vary the number  of unique genotypes tested (no) 
and the number  of ramets per genotypes (nr) such that  nc • nr 
always equals the fixed number  of plants per family. Gains 
are calculated for each combination of n c and nr, for a specific 
set of population parameters (variance components, mating 
designs, selection intensities). The opt imum distribution of 
effort for a set of conditions is defined as that combination of 
nc and nr which yields the largest gain. 

The assumptions necessary for applying the formulas 
derived and the above method of optimization are as follows: 

1) Only additive and dominance genetic effects are important 
to the total genetic variance. 

Table 1. Conditions used to generate sample gain estimates 
for evaluating the opt imum distribution of effort between 
individuals and ramets 

Parameters Conditions 

1. crp: 3 
2. h2: 0.11,0.22 
3. Cr2Ala~: 10, 1, 112 
4. No. families 120 
5. No. plants/family: 144 
6. No. ramets/genotype: 1, 2, 3, 4, 6, 8 
7. Mating design: 2 x 2 and 4 x 4 disconnected 

factorials 
3 x 3 and 5 • 5 disconnected 
half  diallels 

ap = phenotypic standard deviation; h 2 = narrow sense heri- 
tability; a 2 = additive genetic variance; a 2 = dominance ge- 
netic variance 



important and will be discussed further in the results section. 
Gain predictions are presented in phenotypic standard devia- 
tion units. With proper scaling they are applicable to a range 
of characters having similar heritabilities. 

Results 

The more apparent consequences of redistributing 
effort from individuals to ramets for multistage selec- 
tion can be predicted from examinat ion of equations 
(6)-(9) :  

1) Only the components of variance that occur 
within families are affected by redistribution of effort. 
These are the components that include nc (the number  
of individuals per family) as a divisor. As more effort 
is directed towards ramets, nc becomes smaller and the 
number  of ramets per individual  (nr) becomes larger. 
Components  divided by a smaller nc assume larger 
values and become more important  to the gain for- 
mulas. Because components affected by nc occur in 
both the numerator  and denominator  of all gain equa- 
tions, the effect of altering nr will depend on the rela- 
tive size of variance components and will be difficult to 
predict a priori. 

2) The only factor affect by nr is the environmental  
component  of variance (Ve). When Ve appears in 
family selection gain formulas (6), (8), and (9), it is 
always divided by the constant value nr • nr. Increases 
in gain due to family selection cannot result from a 
reduction of the contr ibut ion of VE to the gain denomi-  
nator. Conversely, the individual  gain formula (7) has 
the component  VE divided by n~ alone. Reducing the 
gain denominator  will increase the precision of selec- 
tion within families, and thus act to increase gain. 

3) Conversely to (2), redistributing effort from 
individuals to ramets also reduces the number  of 
unique genotypes within each family from which selec- 
tions can be made. When a fixed number  of individ- 
uals must be selected from each family, the result is a 
reduction in individual  selection intensity and a conse- 
quent reduction in gain. 

Because redistribution of effort can result in both 
gains and losses, an op t imum allocation scheme must 
exist for any set of conditions. 

Multistage selection 

The results for two-stage and three-stage selection 
demonstrate similar principals and will be discussed 
together. Table 3 provides a typical example of the 
optimization process for three-stage selection. A 4 x 4  
disconnected factorial is shown, 50% of the available 
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half-sib families and one full-sib family per half-sib 
family are saved; the heritabili ty = 0.11 and a~ /a  2 
= 1.0. As mentioned above ncxnr is always 144. Note 
(column 3) that the individual  selection intensity (iind) 
decreases with decreasing nr Redistr ibution of effort 
affects gain at all levels of selection, with the most 

Table 2. The number of half-sib families, full-sib families, 
and individuals selected for 4 different mating designs a 

Two-stage selection 

2 x 2 factorial or 3 x 3 diallel 4 x 4 factorial or 5 x 5 diallel 

Full-sib Individuals Full-sib Individuals 
families families 

60 2 60 1 
40 3 30 2 
30 4 20 3 
24 5 15 4 

Three-stage selection 

2 x 2 factorial or 3 x 3 diallel 4 x 4 factorial or 5 x 5 diallel 

Half-sib Full-sib Individuals 
families families 

Half-sib Full-sib Individuals 
families families 

60 1 2 30 1 2 
40 1 3 20 1 3 
30 1 4 15 1 4 
24 ! 5 12 1 5 
20 1 6 30 2 1 

15 2 2 

a Full-sib family selection intensities for 3-stage selection 
were calculated using these numbers after correction for the 
probability of selecting a given full-sib family from two over- 
lapping (previously selected) half-sib families; see text for 
details. Selection intensities for 2-stage selection were calculat- 
ed directly from the values above 

Table3. Predicted gains in standard deviation units for a 
4x 4 disconnected factorial mating design: 30 of 60 available 
half-sib families selected (ihs = 0.79), ifs (adjusted) = 0.99; 
h 2 = 0.11, cr~/~r 2 = 1 

nc nr iind Gind Grs Ghs Gt 

144 1 2.46 0.142 0.097 0.132 0.371 
72 2 2.20 0.166 0.098 0.133 0.397 
48 3 2.04 0.177 0.098 0.133 0.408 
36 4 1.91 0.182 0.098 0.132 0.412 
24 6 1.73 0.182 0.100 0.132 0.414 
16 8 1.53 0.168 0.102 0.131 0 .40 i  

nc = number of genotypes per full-sib family; n r = number of 
ramets per genotype; iind= within-family selection intensity; 
Gin d = within-family selection gain; Gf~ = full-sib within half- 
sib family selection gain; Ghs = half-sib family selection gain; 
Gt = total gain 
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dramatic changes evident for individual gain. Further 
decreasing nc by increasing nr will eventually reduce 
family selection gains by increasing the contribution of  
within-family genetic variance components to the 
family gain denominators. However, in the example 
presented, there is no appreciable loss in family selec- 
tion gain even when n c has been reduced to 16. Total 
gain is maximum for these conditions when 24 geno- 
types and 6 ramets of  each genotype are used. The 
efficiency of  redistribution (gain for the opt imum 
distribution divided by the gain for the single ramet 
case) is 1.12. 

The opt imum number  of  ramets and maximum 
genetic gain for two-stage selection (Table 4) and for 
three-stage selection (Tables 5, 6 and 7) were investi- 
gated for the conditions listed in Table 1. For  these 
conditions, the opt imum number  of  ramets per indi- 
vidual varied from 1 to 6 and the efficiency varied 
from 1.0 to 1.20. The effect of  varying conditions is 
similar between the two selection methods and can be 
summarized as follows: 
1) Small ratios of  additive to dominance variance favor 
opt imum distributions with few ramets per individual 
and yield less total gain than cases for which the ratio 
is large. 
2) Cases with higher heritabilities have opt imum dis- 
tributions with fewer ramets per individual and larger 
genetic gains than cases with lower heritabilities. 
3) Conditions that allow more intensive family selec- 
tion have opt imums with fewer ramets per individual 
than when family selection is less severe. More inten- 

sive family selection always yielded greater total gains 
than less intensive selection. 
4) Mating designs that include more parents per set 
(i.e. 4x4  factorial vs. 2x2  factorial) favor larger num- 
bers of  ramets, although this effect is very small. 
Genetic gains were larger when sets including more 
parents were used and little difference in gain was 
noticable between mating designs that had the same 
number of  full-sib families per half-sib family. 

Our model allows allocation of  the total variance 
among only additive genetic, dominance genetic, and 
environmental sources. Because the total variance is 
fixed by assumption, alteration of  conditions that 
affect genetic components of  variance will also affect 
the amount of  variance that is allocated to environ- 
mental effects. Recall that the benefit of  clonal replica- 
tion is realized by reduction of  the contribution of  the 
environmental variance component to the individual 
gain denominator. Reduction of  this contribution is of  
little consequence when the environmental variance is 
already a small proportion of the total (e.g. high 
heritability, large dominance genetic component). Both 
family selection intensities and mating design have 
their ultimate effect on individual selection intensities. 
When few families are selected, a larger number  (and 
proportion) of  the individuals available within each 
selected family must be retained to maintain a constant 
breeding population size, reducing individual selection 
intensity. Mating designs that include more parents per 
set require selection of  fewer individuals each genera- 
tion to produce the designated 120 full-sib families, 

Table4. Optimum number of ramets and predicted gain in phenotypic standard deviation units (in parentheses) for two-stage 
selection. All mating designs provide 120 full-sib families for selection 

Optimum no. of ramets (predicted gain) 

h 2 = 0.11 h 2 = 0.22 

Proportion of 10 1 0.5 10 1 0.5 
families saved 

2 x 2 factorial or 3 x 3 half diallel 
0.50 6 (0.38) 6 (0.33) 3 -4  (0.30) 6 (0.63) 3 (0.54) 
0.33 6 (0.43) 4 (0.37) 3 (0.33) 4 (0.69) 2 (0.60) 
0.25 6 (0.45) 4 (0.39) 3 (0.35) 4 (0.73) 2 (0.63) 
0.20 4-6  (0.47) 3 (0.41) 3 (0.36) 3 -4  (0.75) 2 (0.65) 
O. 166 4 (0.48) 3 (0.42) 2 (0.37) 3 (0.76) 2 (0.67) 

4 x 4 factorial or 5 x 5 half diallel 
0.50 6 (0.41) 6 (0.35) 4 (0.32) 6 (0.68) 3 -4  (0.57) 
0.25 6 (0.49) 6 (0.42) 3 -4  (0.37) 6 (0.78) 3 (0.67) 
0.166 6 (0.52) 4 (0.45) 3 (0.40) 4 (0.82) 2 (0.71) 
0.125 6 (0.53) 4 (0.46) 3 (0.41) 4 (0.85) 2 (0.73) 

2 (0.50) 
2 (0.55) 
1 (0.58) 
1 (0.60) 
1 (0.61) 

2 (0.52) 
2 (0.61) 
2 (0.64) 
1 (0.66) 

h 2 = narrow sense heritability; a~ = additive genetic variance; a 2 = dominance genetic variance 



Table 5. Optimum number of ramets and predicted gain in phenotypic standard deviation units (in parentheses for three-stage 
selection a 

Optimum no. of ramets (predicted gain) 

h 2= 0.11 h 2 = 0.22 

2 2 aglcr D a2Ala 2 

Proportion of hs 10 1 0.5 10 1 0.5 
families saved 

2 x 2 factorial 

0.50 6 (0.41) 4 - 6  (0.36) 
0.33 6 (0.45) 4 (0.40) 
0.25 6 (0.47) 4 (0.42) 
0.20 6 (0.49) 3 - 4  (0.43) 
0.167 4 (0.50) 3 (0.44) 

3 x 3 half-diallel 

0.50 6 (0.41) 6 (0.36) 
0.33 6 (0.45) 4 (0.40) 
0.25 6 (0.47) 4 (0.42) 
0.20 6 (0.49) 3 (0.43) 
0.167 4 (0.50) 3 (0.44) 

2 x 2 factorial of 3 x 3 half diallel with adjusted 

0.50 6 (0.42) 6 (0.37) 
0.33 6 (0.46) 4 (0.40) 
0.25 6 (0.48) 3 - 4  (0.42) 
0.20 4 - 6  (0.40) 3 (0.43) 
0.167 4 (0.50) 3 (0.44) 

3 (0.32) 6 (0.77) 3 (0.68) 2 (0.64) 
3 (0.36) 4 (0.78) 2 (0.78) 2 (0.73) 
3 (0.38) 4 (0.91) 2 (0.83) 1 (0.78) 
3 (0.39) 3 (0.94) 2 (0.86) 1 (0.81) 
2 (0.40) 3 (0.97) 2 (0.89) 1 (0.84) 

3 - 4  (0.32) 6 (0.77) 3 (0.69) 
3 (0.36) 4 (0.86) 2 (0.78) 
3 (0.38) 4 (0.91) 2 (0.83) 
3 (0.39) 3 - 4  (0.95) 2 (0.86) 
2 (0.40) 3 (0.97) 2 (0.89) 

full-sib selection intensity 

3 (0.33) 6 (0.78) 3 (0.69) 
3 (0.36) 4 (0.77) 2 (0.77) 
3 (0.38) 4 (0.92) 2 (0.83) 
3 (0.39) 3 (0.95) 2 (0.87) 
2 (0.40) 3 (0.97) 2 (0.89) 

2 (0.64) 
2 (0.73) 
1 (0.78) 
1 (0.81) 
1 (0.84) 

2 (0.64) 
2 (0.73) 
1 (0.78) 
1 (0.82) 
1 (0.84) 

a Mating designs each produce a total of 120 families and one full-sib family was selected from each selected half-sib family. Full- 
sib family selection intensities were: 0.53 for adjusted 2x2  factorial, 0.54 for adjusted 3x3 half-diallel and 0.56 for both 
unadjusted designs 
h 2 = narrow sense heritability; a2A = additive genetic variance; a 2 = dominance genetic variance 

Table 6. Optimum number of ramets and predicted gain in phenotypic standard deviation units (in parentheses) for three-stage 
selection a 

Optimum no. of ramets (predicted gain) 

h 2 = O. 11 h 2 = 0.22 

Proportion of hs 10 1 0.5 10 1 0.5 
families saved 

4 x 4 factorial 

0.50 6 (0.48) 6 (0.41) 3 - 4  (0.37) 6 (0.86) 3 (0.75) 2 (0.70) 
0.33 6 (0.51) 4 (0.45) 3 (0.41) 4 (0.93) 2 (0.84) 2 (0.78) 
0.25 6 (0.53) 4 (0.47) 3 (0.42) 4 (0.98) 2 (0.88) 1 (0.83) 
0.20 6 (0.54) 3 (0.48) 3 (0.44) 3 (1.01) 2 (0.91) 1 (0.86) 

5 x 5 half diallel 

0.50 6 (0.48) 6 (0.41) 3 - 4  (0.37) 6 (0.86) 3 (0.75) 2 (0.70) 
0.33 6 (0.51) 4 (0.45) 3 (0.41) 4 (0.93) 2 (0.84) 2 (0.78) 
0.25 6 (0.53) 4 (0.47) 3 (0.43) 4 (0.98) 2 (0.88) 1 (0.83) 
0.20 6 (0.54) 3 (0.48) 3 (0.44) 3 (1.01) 2 (0.91) 1 (0.86) 

4 x 4 factorial or 5 x 5 half diallel with unadjusted full-sib family selection intensity 

0.50 6 (0.48) 6 (0.42) 3 - 4  (0.38) 6 (0.87) 3 (0.76) 2 (0.70) 
0.33 6 (0.52) 4 (0.45) 3 (0.41) 4 (0.94) 2 (0.84) 2 (0.78) 
0.25 6 (0.53) 4 (0.47) 3 (0.43) 4 (0.98) 2 (0.88) 1 (0.83) 
0.20 4 - 6  (0.54) 3 (0.48) 3 (0.44) 3 - 4  (1.01) 2 (0.91) 1 (0.86) 

a Mating designs each produce 120 full-sib and 60 half-sib families; one full-sib family was selected from each selected half-sib 
family. Full-sib family selection intensities were: 1.02 for adjusted 4 x 4 factorial, 1.02 for adjusted 5 x 5 half diallel and 1.03 for 
both designs when unadjusted 
h 2 = narrow sense heritability; 2 aA = additive genetic variance; ~2 = dominance genetic variance 
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Table 7. Optimum number of ramets and predicted gain in phenotypic standard deviation units (in parentheses) for three-stage 
selection using a 4 • 4 factorial mating design; two full-sib families are saved for each selected half-sib family. Full-sib family 
selection intensity is 0.59 when adjusted and 0.66 when adjusted 

Optimum no. of ramets (predicted gain) 

h 2 = O. 11 h 2 = 0.22 

o~/~ ~ / ~  

Propoition of hs 10 1 0.5 10 1 0.5 
families saved 

4 x 4 factorial 

0.50 6 (0.45) 6 (0.40) 4 (0.36) 6 (0.83) 3 - 4  (0.72) 2 (0.67) 
0.25 6 (0.52) 6 (0.45) 3 - 4  (0.41) 6 (0.96) 3 (0.86) 2 (0.81) 

4 x 4 factorial with unadjusted full-sib family selection intensity 

0.50 6 (0.46) 6 (0.40) 4 (0.36) 6 (0.84) 3 - 4  (0.74) 2 (0.86) 
0.25 6 (0.52) 6 (0.46) 3 - 4  (0.42) 6 (0.97) 3 (0.87) 2 (0.81) 

h 2 = narrow sense heritability; cr~ = additive genetic variance; cr~ = 

T a b l e  8. Predicted genetic gain for combined index selection 
using factorial and half diallel mating designs. The optimum 
number of ramets was 1 in all cases of index selection 

Predicted gain 

h 2 = 0 . 1 1  h 2 = 0.22 

2 2 GA/aD ~r~/~ZD 

Mating design 10 1 0.5 10 1 0.5 

2x2 
factorial 0.64 0.54 0.52 0.95 0 .85  0.78 

3• 
halfdiallel 0.64 0.56 0.51 0.95 0.84 0.78 

4x4 
factorial 0.70 0.64 0.60 1.03 0.95 0.89 

5• 
halfdiallel 0.69 0 .63  0.58 1.02 0 .93  0.88 

h 2 = narrow sense heritability; cr 2 = additive genetic variance; 
a 2 = dominance genetic variance 

resulting in larger indiv idual  selection intensities. The 
relat ionship between factors affecting selection inten- 
sity and the op t imum dis t r ibut ion of  effort will not be 
s imple because selection intensity is not a l inear func- 
t ion of  the propor t ion  of  famil ies  or individuals  saved. 

Reducing the full-sib family selection intensity, by 
selecting more than one full-sib family per  half-sib 
family (Table 7), increases individual  selection inten- 
sity. Compar i son  of  da ta  in Table 7 with corresponding 
da ta  in Table  6 indicates that  such a redis t r ibut ion of  
selection intensity favors op t imum distr ibutions with 
more ramets per  individual ,  but  results in smaller  
gains. However,  when the total number  of  full-sib 
families selected was the same (15 of  60 half-sib fami- 

dominance genetic variance 

lies with two full-sib families each versus 30 of  60 half- 
sib familes with one full-sib family each) the op t imum 
number  of  ramets was identical  and gains were greater 
with more intensive half-sib selection. Dis t r ibut ion of  
selection intensity between kinds of  families would 
have little effect on individual  selection intensity and 
thus would not have much effect on the op t imum 
distr ibut ion of  individuals  and ramets. 

The predicted gains require little discussion. As 
expected, high heritabil i t ies,  large ratios of  addi t ive to 
dominance  variance and conditions that allow high 
selection intensities - for both families and individuals  
- resulted in the largest genetic gains. Gains were very 
s imilar  for mat ing designs that have the same number  
of  full-sib families per  half-sib family. Adjustment  of  
full-sib family selection intensities had a small effect 
on gains; higher order  designs were less affected due to 
lower probabi l i t ies  of  selecting the same full-sib family 
twice. 

Combined index selection 

The op t imum number  of  ramets for index selection 
was one for all cases tested (Table 8). Gains  are greater 
for index selection than for multistage selection, but  
follow the same trends. Factor ia l  mating designs yield- 
ed slightly larger expected gains than diallel  designs 
when the number  of  full-sib families per half-sib 
family was the same, al though the difference was very 
small. 

D i s c u s s i o n  

The most commonly cited benefit  of  clonal propaga-  
tion is the potential  for using non-addi t ive  genetic 
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variance in a production population. With the excep- 
tion of reciprocal recurrent selection, most selection 
schemes are not designed to accumulate such gain over 
generations. Our results indicate that the use of clonal 
replicates in genetic tests can increase the cumulative 
or additive genetic gain that is obtained at each cycle 
of breeding, relative to that expected from the single 
ramet, or non-clonal case. The use of multiple ramets 
to improve cumulative genetic gain does not preclude 
the use of combined family-individual-ramet tests to 
select superior genotypes for propagation. Our own 
investigations (data not presented) indicate that selec- 
tion for both additive and non-additive effects will 
yield substantial, although partially noncumulative, 
gains over selection for additive effects alone. 

The relative advantage of using multiple versus 
single ramets for each tested individual was highly 
dependent on the conditions invoked and the single 
ramet case was rarely optimal for multistage selection, 
over the range of conditions that we tested. Further, a 
substantial portion of the total gain is usually obtained 
from family selection even when clonal replication is 
advantageous, regardless of the value of clonal replica- 
tion. This demonstrates the importance of considering 
clonal propagules as a component of a breeding and 
testing scheme that incorporates several levels of varia- 
tion. 

Combined index selection yielded the largest ex- 
pected gains, and always gave optimum gains with a 
single ramet. This result agrees with that published by 
Libby (1969) for a model based on the hierarchical 
mating design. The difference between index and 
multistage selection results may best be explained by a 
consideration of the individuals likely to be selected 
when using each method. Index selection imposes no 
coancestry control. As a consequence, a large propor- 
tion of the selected individuals often originate from a 
few of the best families, a factor that is certain to 
reduce the effective individual selection intensity. Our 

results indicate that cases with conditions that cause 
low individual selection intensity tend to favor dis- 
tributions with few ramets per individual. Multistage 
selection is in fact a method of coancestry control. 
A restricted index selection scheme with some co- 
ancestry control imposed might yield a pattern similar 
to that observed for multistage selection. 

In many forest tree breeding programs, the amount 
of material available at a specified level of improve- 
ment and/or the necessity for avoidance of inbreeding 
will control the intensity of family selection. When 
family selection intensity must be sacrificed to avoid 
relatedness within the breeding population, substitu- 
tion of ramets for individuals can partially compensate 
for this loss in intensity. As programs mature, more 
emphasis must be placed on within-family selection 
and the use of clonal propagules in genetic tests should 
become more valuable. 
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